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Getting Started with Phased Array
System Toolbox Software

• “Phased Array System Toolbox Product Description” on page 1-2
• “Limitations” on page 1-3
• “Standards and Conventions” on page 1-4
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Phased Array System Toolbox Product Description
Design and simulate sensor array and beamforming systems

Phased Array System Toolbox provides algorithms and apps for designing and simulating sensor array
and beamforming systems in wireless communication, radar, sonar, acoustic, and medical imaging
applications. You can model and analyze the behavior of active and passive arrays, including
subarrays and arbitrary geometries. Simulated signals can be transmitted and received by these
arrays for beamforming and signal processing algorithm design.

For 5G and LTE cellular, SATCOM, and WLAN communications systems, you can design multibeam
and electronically steerable antennas. The toolbox includes algorithms for simulating hybrid and full
digital beamforming architectures for massive MIMO and millimeter wave systems. You can simulate
multipath fading environments to test the performance of beamforming antenna arrays.

For radar, sonar, and acoustic system design, the toolbox includes signal processing algorithms for
beamforming, space-time adaptive processing (STAP), direction of arrival (DOA) estimation, matched
filtering, and signal detection. The toolbox also provides continuous and pulsed waveforms that you
can use to generate test signals and simulate target echoes, interferences, and propagation effects.

For simulation acceleration or desktop prototyping, the toolbox supports C code generation.
Reference examples provide workflows for generating HDL code from Simulink® models.

1 Getting Started with Phased Array System Toolbox Software

1-2



Limitations
In this section...
“MATLAB Compiler Support” on page 1-3
“Code Generation Support” on page 1-3

MATLAB Compiler Support
Phased Array System Toolbox supports the MATLAB® Compiler™ for all functions and System objects.
Compiler support does not extend to any of the toolbox apps.

Code Generation Support
While the Phased Array System Toolbox software supports automatic generation of C code using
MATLAB Coder™, there are several limitations. See “Code Generation” for more information about
limitations on the use of MATLAB Coder with the Phased Array System Toolbox.

 Limitations
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Standards and Conventions
In this section...
“Scope of Standards and Conventions” on page 1-4
“Complex-Valued Baseband Signals” on page 1-4
“Data Organization of Baseband Signals” on page 1-4
“Spatial Coordinates” on page 1-4
“Physical Quantities” on page 1-5
“Supported Data Types” on page 1-5

Scope of Standards and Conventions
Phased Array System Toolbox software uses consistent conventions with respect to units of measure,
data representations, and coordinate systems. You must understand these conventions to use the
toolbox.

Complex-Valued Baseband Signals
In phased array signal processing, it is common to shift the frequency content of a waveform to
support effective radiation and propagation in the medium. You accomplish this task by modulating a
baseband signal with nonzero spectral magnitudes in the vicinity of zero frequency to create a
bandpass signal with nonzero spectral magnitudes centered around a carrier frequency. Typically, the
bandwidth of the baseband signal is small compared to the carrier frequency resulting in a
narrowband signal. To process returned signals, the receiver demodulates the bandpass signal to the
baseband. The demodulation involves local oscillators both in phase and 90 degrees out of phase with
the modulating carrier frequency. This demodulation results in in-phase I and quadrature Q baseband
signals, or channels. For processing, it is convenient to create a complex-valued baseband signal by
assigning the I channel to be the real part and the Q channel to be the imaginary part, I+jQ.

This software uses the complex-valued baseband representation to represent both transmitted and
received signals. Actual phased array systems transmit real-valued signals and create complex-valued
baseband signals only at the receiver. However, you can use a complex-valued representation at all
stages. Doing so enables you to accurately model the effect of system gains, losses, and interference
on the received signal samples.

Data Organization of Baseband Signals
You can use this software to efficiently implement space-time processing of complex-valued baseband
samples by organizing the data in a three-dimensional matrix. See “Radar Data Cube” on page 3-2
for an explanation of how the software organizes space-time data.

Spatial Coordinates
Representation of position in three dimensions is a fundamental aspect of array signal processing.
This software specifies rectangular and spherical coordinates as column vectors with respect to both
global and local origins. For a detailed explanation of the conventions, see:

• “Rectangular Coordinates”

1 Getting Started with Phased Array System Toolbox Software
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• “Spherical Coordinates”
• “Global and Local Coordinate Systems”

Physical Quantities
This software uses the International System of Units (SI) almost exclusively for measurement. In
addition, there are physical constants declared and used in calculations. See “Units of Measure and
Physical Constants” on page 3-6 for a detailed explanation of the conventions.

Supported Data Types
This software supports double-precision data types in all objects blocks, and functions. Some objects
and blocks support single-precision data types.

System objects supporting single precision Blocks supporting single precision
phased.ADPCACanceller ADPCA Canceller
phased.AngleDopplerResponse Angle Doppler Response
phased.BeamscanEstimator ULA Beamscan Spectrum
phased.BeamscanEstimator2D Beamscan Spectrum
phased.BeamspaceESPRITEstimator Beamspace ESPRIT DOA
phased.CFARDetector CFAR Detector
phased.CFARDetector2D 2-D CFAR Detector
phased.DopplerEstimator Doppler Estimator
phased.DPCACanceller DPCA Canceller
phased.ESPRITEstimator ESPRIT DOA
phased.GCCEstimator GCC DOA and TOA
phased.FrostBeamformer Frost Beamformer
phased.GSCBeamformer GSC Beamformer
phased.LCMVBeamformer LCMV Beamformer
phased.MUSICEstimator ULA MUSIC Spectrum
phased.MUSICEstimator2D MUSIC Spectrum
phased.MVDRBeamformer MVDR Beamformer
phased.MVDREstimator2D MVDR Spectrum
phased.PhaseShiftBeamformer Phase Shift Beamformer
phased.RangeDopplerResponse Range Doppler Response
phased.RangeEstimator Range Estimator
phased.RangeResponse Range Response
phased.RootMUSICEstimator Root MUSIC DOA
phased.RootWSFEstimator Root WSF DOA
phased.STAPSMIBeamformer SMI Beamformer
phased.StretchProcessor Stretch Processor

 Standards and Conventions
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System objects supporting single precision Blocks supporting single precision
phased.SubbandMVDRBeamformer Subband MVDR Beamformer
phased.SubbandPhaseShiftBeamformer Subband Phase Shift Beamformer
phased.SumDifferenceMonopulseTracker ULA Sum and Difference Monopulse
phased.SumDifferenceMonopulseTracker2D URA Sum and Difference Monopulse
phased.TimeDelayBeamformer Time Delay Beamformer
phased.TimeDelayLCMVBeamformer Time Delay LCMV Beamformer

Functions supporting single precision

Functions supporting single precision
dechirp
dopsteeringvec

1 Getting Started with Phased Array System Toolbox Software

1-6



Phased Array Systems

2



System Overviews
In this section...
“Phased Array System Overview” on page 2-2
“Phased Array Radar Overview” on page 2-3

Phased Array System Overview
Phased array systems use the spatial and temporal characteristics of propagating space-time
wavefields to extract information about any sources of the wavefields. By processing data collected
over a spatiotemporal aperture using an array of sensors, you can significantly improve performance
over a single sensor in a number of areas. These areas include, but are not limited to:

• Signal detectability
• Spatial selectivity
• Source identification and localization

The following figure shows a high-level overview of a phased array system.

Phased array systems in diverse applications, such as radar, sonar, medical ultrasonography, medical
imaging, and cellular phone communication share many common elements including:

• Source Array — The source array transmits a waveform through an environment. The waveform
often consists of repeating pulses modulated by a carrier frequency. Depending on the application,
the wave may be an acoustic (mechanical), or electromagnetic wave. The source array is often
electronically or mechanically steered to transmit in preferred directions.

• Environment — The medium in which the waveform travels to and from the target affects a
number of system parameters including propagation speed, absorption loss, and wave dispersion.

• Target — The target reflects a portion of the incident waveform energy from the source array.
Some percentage of the reflected energy is backscattered in the direction of the receiver array. In
some applications, the target is the source of the waveform energy.

• Receiver Array — The receiver array collects energy from the target representing the signal
along with external and internal sources of noise. The receiver implements algorithms to improve
the signal-to-noise ratio and extract space-time information from the signal.

At the receiver, phased array systems implement algorithms to extract temporal and spatial
information about the source, or sources of energy. The following figure shows a high-level overview
of array signal processing algorithms common to a significant number of phased array systems.

2 Phased Array Systems
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Brief descriptions of the three categories are:

• Temporal Processing — Phased arrays often operate in poor signal-to-noise (SNR) ratios.
Employing temporal integration and matched filtering improves the SNR. Knowing the
propagation speed of the transmitted waveform and measuring the time it takes for a pulse to
travel to and from a target allows phased array systems to estimate range. Performing Fourier
analysis on a time series of pulses enables the phased array to extract Doppler information from
moving targets.

• Spatial Processing — Combining weighted information across multiple sensor elements with a
known geometry enables phased array systems to spatially filter incoming waveforms. Phased
arrays can also estimate the direction of arrival and the number of source waveforms incident on
the array.

• Space-Time Processing — Simultaneously analyzing both spatial and temporal information
enables phased array systems to produce joint angle-Doppler measurements of incident
waveforms. Space-time processing enables phased array systems to distinguish moving targets
from stationary targets when the phased array is in motion.

Phased Array Radar Overview
The following figure presents an overview of a radar phased array system. The figure expands on the
high-level overview shown in “Phased Array System Overview” on page 2-2.

To exploit the advantages of array processing, you must first understand how to model and optimize
the performance of each component and operation in a phased array system. This software provides

 System Overviews
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models for all the components of the phased array system illustrated in the preceding figure from
signal synthesis to signal analysis.

The software supports models in which the transmitter and receiver are collocated or spatially
separated. The software also supports models in which both the targets and phased array are in
motion.

Waveform Synthesis

Phased Array System Toolbox software supports the design of rectangular, linear frequency-
modulated, and linear stepped-frequency pulsed waveforms. To create such waveforms, you use
phased.RectangularWaveform, phased.LinearFMWaveform, and
phased.SteppedFMWaveform.

Physical Components and Environment Modeling

The software enables you to simulate the physical components of a phased array system, including:

• Transmitter — You can specify the transmitter peak power, gain, and loss factor. See
phased.Transmitter for details.

• Antenna elements — You can create antenna elements with isotropic response patterns or
antenna elements with user-specified response patterns. These response patterns can encompass
the entire range of azimuth ([-180,180] degrees) and elevation ([-90,90] degrees) angles. See
phased.IsotropicAntennaElement, phased.CosineAntennaElement, and
phased.CustomAntennaElement for details.

• Microphone elements — For acoustic applications, you can model an omnidirectional or custom
microphone with phased.OmnidirectionalMicrophoneElement or
phased.CustomMicrophoneElement.

Phased arrays — There are System objects for three phased array geometries:

• Uniform linear array (ULA) — phased.ULA enables you to model a uniform linear array
consisting of sensor elements with isotropic or custom radiation patterns. You can specify the
number of elements and element spacing.

• Uniform rectangular array — phased.URA enables you to model a uniform rectangular array
of sensor elements with isotropic or custom radiation patterns. You can specify the number of
elements, element spacing along two orthogonal axes, and lattice geometry.

• Conformal array — phased.ConformalArray enables you to model a conformal array of
sensor elements with isotropic or custom radiation patterns. To do so, specify the antenna
element positions and normal directions.

• Radiator — You can model waveform radiation through an antenna element, microphone, or array
with the phased.Radiator object.

• Environment — You can model the propagation of an electromagnetic (EM) wave in free space
with phased.FreeSpace. You can simulate one-way or two-way propagation of a narrowband EM
signal by applying range-dependent attenuation and time delays, or phase shifts.

• Target — You can simulate a target with a specified radar cross section (RCS) using
phased.RadarTarget. phased.RadarTarget supports both nonfluctuating and fluctuating
(random) models of the RCS. The toolbox supports a family of random models based on the chi-
square distribution known as Swerling target models.

• Signal collection — You can simulate far-field or near-field narrowband and wideband signal
reception from specified directions using phased.Collector and
phased.WidebandCollector.

2 Phased Array Systems
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• Receiver — phased.ReceiverPreamp enables you to simulate the gain, loss factor, and internal
noise characteristics of your receiver.

Array Signal Processing

For the processing of received data, Phased Array System Toolbox software supports a wide-range of
array signal processing algorithms. The following figure presents a more detailed view of the general
concepts discussed in “Phased Array System Overview” on page 2-2.

The preceding figure only presents an overview of the array signal processing operations supported
by the software rather than predetermined orders of operation. For example, direction of arrival
(DOA) estimation, beamforming, and space-time adaptive processing (STAP) often follow operations
that improve the signal-to-noise ratio such as matched filtering. You can implement the supported
algorithms in the manner best-suited to your application.

• Matched Filtering — You can perform matched filtering on your data with
phased.MatchedFilter. See “Matched Filtering” for examples.

• Time-varying gain — You can equalize the power level of the incident waveform across samples
from different ranges using phased.TimeVaryingGain. This object compensates for signal
power loss due to range.

• Beamforming and direction-of-arrival (DOA) estimation — The Phased Array System Toolbox
provides a number of algorithms for beamforming and direction of arrival estimation.

• Detection — A number of utility functions implement and evaluate Neyman-Pearson detectors
using both coherent and noncoherent pulse integration.

 System Overviews

2-5



The toolbox also provides routines for evaluating detector performance through the construction
of receiver operating characteristic curves.

To model fluctuating noise characteristics, phased.CFARDetector object adaptively estimates
the noise characteristics from the data to maintain a constant false-alarm rate.

• Pulse Doppler — The Phased Array System Toolbox has utility functions for estimating Doppler
shift based on speed (speed2dop) and to estimate speed based on the Doppler shift (dop2speed.
You can implement pulse-Doppler processing by using the spectrum estimation algorithms in the
Signal Processing Toolbox™ product on the slow-time data. See “Radar Data Cube” on page 3-2
for an explanation of the slow-time data.

See “Doppler Shift and Pulse-Doppler Processing” for examples of Doppler processing.

To calculate the joint angle-Doppler response of the input data, use
phased.AngleDopplerResponse.

Example workflows for computing the angle-Doppler response can be found in “Angle-Doppler
Response”.

• Space-time adaptive processing — You can implement displaced phase center antenna
techniques with phased.DPCACanceller and phased.ADPCACanceller.
phased.STAPSMIBeamformer implements an adaptive beamformer by calculating the
beamformer weights using the estimated space-time interference covariance matrix.

2 Phased Array Systems
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Radar Data Cube, Units, and Physical
Constants

• “Radar Data Cube” on page 3-2
• “Units of Measure and Physical Constants” on page 3-6
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Radar Data Cube
In this section...
“Radar Data Cube Concept” on page 3-2
“Fast Time Samples” on page 3-3
“Slow Time Samples” on page 3-3
“Spatial Sampling” on page 3-4
“Space-Time Processing” on page 3-4
“Organizing Data in the Radar Data Cube” on page 3-4

Radar Data Cube Concept
The radar data cube is a convenient way to conceptually represent space-time processing. To
construct the radar data cube, assume that preprocessing converts the RF signals received from
multiple pulses across multiple array elements to complex-valued baseband samples. Arrange the
complex-valued baseband samples in a three-dimensional array of size K-by-N-by-L.

• K defines the length of the first (fast-time) dimension.
• N defines the length of the second (spatial) dimension.
• L defines the length of the third (slow-time) dimension.

Many radar signal processing operations in Phased Array System Toolbox software correspond to
processing lower-dimensional subsets of the radar data cube. The subset could be a one-dimensional
subvector or a two-dimensional submatrix.

The following figure shows the organization of the radar data cube in this software. Subsequent
sections explain each of the dimensions and which aspect of space-time processing they represent.

3 Radar Data Cube, Units, and Physical Constants
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Fast Time Samples

Consider an K-by-1 subvector of the radar data cube along the fast-time axis in the preceding
diagram. Each column vector represents a set of complex-valued baseband samples from a single
pulse at one array element sampled at the rateFs. This sampling rate is the highest sampling rate of
the system and leads to the designation fast time. Choose the sampling rate, Fs, large enough to
avoid aliasing. The corresponding sampling interval is Ts = 1/Fs. The fast time dimension is also
referred to as the range dimension. Fast time sample intervals, when converted to distance using the
signal propagation speed, are often referred to as range bins, or range gates.

Pulse compression is an example of a signal processing operation performed on the fast time samples.
Another example of signal processing is dechirping. In these types of operations, the number of
samples in the first dimension of the output can differ from the input.

Slow Time Samples
Consider each K-by-L submatrix of the radar data cube. The submatrix contains K row vectors with
dimension 1-by-L. Each of these row vectors contains complex-valued baseband samples from L
different pulses from the same range bin. There is a K-by-L matrix for each of the N array elements.
The sampling interval between the L samples is the pulse repetition interval (PRI). Typical PRIs are
much longer than the fast-time sampling interval. Because of the long sampling intervals, samples
taken across multiple pulses are referred to as slow time.

 Radar Data Cube
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Processing data in the slow-time dimension allows you to estimate the Doppler spectrum at a given
range bin. In this type of operation, the number of samples in the third dimension of the data cube
can change. The number of Doppler bins is not necessarily equal to the number of pulses.

The Nyquist criterion applies equally to the slow-time dimension. The reciprocal of the PRI is the
pulse repetition frequency (PRF). The PRF gives the width of the unambiguous Doppler spectrum.

Spatial Sampling
Phased arrays consist of multiple array elements. Consider each K-by-N submatrix of the radar data
cube. Each column vector consists of K fast-time samples for a single pulse received at a single array
element. The N column vectors represent the same pulse sampled across N array elements. The
sampled data in the N column vectors is a spatial sampling of the incident waveform. Analysis of the
data across array elements lets you determine the spatial frequency content of each received pulse.
The Nyquist criterion for spatial sampling requires that array elements not be separated by more
than one-half the wavelength of the carrier frequency.

In spatial frequency operations, the number of samples in the second dimension of the data cube can
change. The number of spatial frequency bins is not necessarily equal to the number of sensor
elements.

Beamforming is a spatial filtering operation that combines data across the array elements to
selectively enhance and suppress wavefields incident on the array from particular directions.

Space-Time Processing
Space-time adaptive processing operates on the two-dimensional angle-Doppler data for each range
bin. Consider the K-by-N-by-L radar data cube. Each of the K samples is data from the same range.
This range is sampled across N array elements, and L PRIs. Collapsing the three-dimensional matrix
at each range bin into N-by-L submatrices allows the simultaneous two-dimensional analysis of angle
of arrival and Doppler frequency.

Organizing Data in the Radar Data Cube
If you have K complex-valued baseband data samples collected from L pulses received at N sensors,
you can organize your data in a format compatible with the Phased Array System Toolbox conventions
using permute. After processing your data, you can convert back to the original data cube format
with ipermute.

Reordering the Data Cube

Start with a data set consisting of 200 samples per pulse for ten pulses collected at 6 sensor
elements. Your data is organized as a 6-by-10-by-200 MATLAB® array. Reorganize the data into a
Phased Array System Toolbox™ compatible data cube.

Simulate this data structure using complex-valued white Gaussian noise samples.

origdata = randn(6,10,200)+1j*randn(6,10,200);

The first dimension of origdata is the number of sensors (spatial sampling), the second dimension is
the number of pulses (slow-time), and the third dimension contains the fast-time samples. Phased

3 Radar Data Cube, Units, and Physical Constants
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Array System Toolbox™ expects the first dimension to contain the fast-time samples, the second
dimension to represent individual sensors in the array, and the third dimension to contain the slow-
time samples.

To reorganize origdata into a format compatible with the toolbox conventions, enter:

newdata = permute(origdata,[3 1 2]);

The permute function moves the third dimension of origdata into the first dimension of newdata.
The first dimension of origdata becomes the second dimension of newdata and the second
dimension of origdata becomes the third dimension of newdata. This results in newdata being
organized as fast-time samples-by-sensors-by-slow-time samples. You can now process newdata with
Phased Array System Toolbox functions.

After you process your data, you can use ipermute to return your data to the original structure.

data = ipermute(newdata,[3 1 2]);

In this case, data is the same as origdata.

 Radar Data Cube

3-5



Units of Measure and Physical Constants

In this section...
“Units of Measure” on page 3-6
“Physical Constants” on page 3-6

Units of Measure
Phased Array System Toolbox software almost exclusively uses SI base and derived units to measure
physical quantities. The software does not provide any utilities for converting SI base or derived units
to other systems of measurement.

Angles

Angles are an exception to the use of SI base and derived units. All angles in Phased Array System
Toolbox software are specified in degrees. See “Spherical Coordinates” for an explanation of the
angles used in the software. There are two utility functions for converting angles from radians to
degrees and degrees to radians: rad2deg and deg2rad.

Decibels

To accurately model and simulate phased array systems, it is necessary to account for gains and
losses in power incurred at various stages of processing. In Phased Array System Toolbox software,
gains and losses are specified in decibels (dB). Signal to noise ratios (SNRs) and the receiver noise
figure are also expressed in dB. Power in dB is related to power in watts, P, by:

10log10(P)

There are two utility functions for converting between dB and power: db2pow and pow2db, and two
utility functions for converting between magnitude and dB: db2mag and mag2db.

Physical Constants
Modeling and simulating phased array systems requires that you specify values for several physical
constants. For example, the distribution of thermal noise power per unit bandwidth depends on the
Boltzmann constant. To measure Doppler shift and range in radar, you have to specify a value for the
speed of light. The following table summarizes the three physical constants used in the toolbox. See
physconst for additional information.

Constant Description Value
'LightSpeed' Speed of light in vacuum 299,792,458 m/s. Most

commonly denoted by c.
'Boltzmann' Boltzmann constant relating

kinetic energy to temperature
1.3806504 × 10−23 J/K. 2006
NIST value, most commonly
denoted by k.

'EarthRadius' Mean radius of the Earth 6,371,000 m
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• “Overview of Basic Workflow” on page 4-2
• “Signal Simulation” on page 4-3
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Overview of Basic Workflow
The scenario and code examples contained in “Signal Simulation” on page 4-3 serve as an
introduction to the fundamental workflow used in Phased Array System Toolbox software. The
example is intentionally simplified in order to familiarize you with the basic theme that extends
throughout the toolbox. You will find the core elements of this workflow in many other examples.

The basic workflow consists of:

• Constructing objects that represent the physical components and algorithms of your model. The
objects have modifiable properties that enable you to parameterize your model. For information
about the object properties, see the object reference page.

• Using the object's step method to perform the action of your parameterized object on inputs. The
action of step is specific to each algorithm. For example, the step method of the linear FM
waveform, phased.LinearFMWaveform, performs a different action than the step method of the
steering vector, phased.SteeringVector. The specific action and syntax of each step method
are documented on the reference page. You can access the documentation for an object’s step
method by entering:

doc phased.ObjectName/step

at the MATLAB command prompt, or via the hyperlink in the Methods section of the object’s
reference page.
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Signal Simulation

This example shows how to apply the basic toolbox workflow to the following scenario: Assume you
have a single isotropic antenna operating at 4 GHz. Assume the antenna is located at the origin of
your global coordinate system. There is a target with a nonfluctuating radar cross section of 0.5
square meters initially located at (7000,5000,0). The target moves with a constant velocity vector of
(-15;-10;0). Your antenna transmits ten rectangular pulses with a duration of 1 μs at a pulse repetition
frequency (PRF) of 5 kHz. The pulses propagate to the target, reflect off the target, propagate back to
the antenna, and are collected by the antenna. The antenna operates in a monostatic mode, receiving
only when the transmitter is inactive.

Waveform Model

To create the waveform, use the phased.RectangularWaveform System object™ and set the
properties to the desired values.

waveform = phased.RectangularWaveform('PulseWidth',1e-6, ...
    'PRF',5e3,'OutputFormat','Pulses','NumPulses',1);

See “Rectangular Pulse Waveforms” for more detailed examples on creating waveform.

Antenna Model

To model the antenna, use the phased.IsotropicAntennaElement System object. Set the
operating frequency range of the antenna to (1,10) GHz. The isotropic antenna radiates equal energy
for azimuth angles from -180° to 180° and elevation angles from -90° to 90°.

antenna = phased.IsotropicAntennaElement('FrequencyRange',[1e9 10e9]);

Target Model

To model the target, use the phased.RadarTarget System object. The target has a nonfluctuating
RCS of 0.5 square meters and the waveform incident on the target has a carrier frequency of 4 GHz.
The waveform reflecting off the target propagates at the speed of light. Parameterize this information
in defining your target.

target = phased.RadarTarget('Model','Nonfluctuating','MeanRCS',0.5, ...
    'PropagationSpeed',physconst('LightSpeed'),'OperatingFrequency',4e9);

Antenna and Target Platforms

To model the location and movement of the antenna and target, use the phased.Platform System
object. The antenna is stationary in this scenario and is located at the origin of the global coordinate
system. The target is initially located at (7000,5000,0) and moves with a constant velocity vector of
(-15,-10,0).

antennaplatform = phased.Platform('InitialPosition',[0;0;0],'Velocity',[0;0;0]);
targetplatform = phased.Platform('InitialPosition',[7000; 5000; 0], ...
    'Velocity',[-15;-10;0]);

For definitions and conventions regarding coordinate systems, see “Global and Local Coordinate
Systems”.

Use the rangeangle function to determine the range and angle between the antenna and the target.
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[tgtrng,tgtang] = rangeangle(targetplatform.InitialPosition, ...
    antennaplatform.InitialPosition);

See “Motion Modeling in Phased Array Systems” for more details on modeling motion.

Modeling Transmitter

To model the transmitter specifications, use the phased.Transmitter System object. A key
parameter in modeling a transmitter is the peak transmit power. To determine the peak transmit
power, assume that the desired probability of detection is 0.9 and the maximum tolerable false-alarm
probability is 10−6. Assume that the ten rectangular pulses are noncoherently integrated at the
receiver. You can use the albersheim function to determine the required signal-to-noise ratio (SNR).

Pd = 0.9;
Pfa = 1e-6;
numpulses = 10;
SNR = albersheim(Pd,Pfa,10);

The required SNR is approximately 5 dB. Assume you want to set the peak transmit power in order to
achieve the required SNR for your target at a range of up to 15 km. Assume that the transmitter has
a 20 dB gain. Use the radar equation to determine the required peak transmit power.

maxrange = 1.5e4;
lambda = physconst('LightSpeed')/target.OperatingFrequency;
tau = waveform.PulseWidth;
Ts = 290;
rcs = 0.5;
Gain = 20;
dbterm = db2pow(SNR - 2*Gain);
Pt = (4*pi)^3*physconst('Boltzmann')*Ts/tau/rcs/lambda^2*maxrange^4*dbterm;

The required peak transmit power is approximately 45 kilowatts. To be conservative, use a peak
power of 50 kilowatts in modeling your transmitter. To maintain a constant phase in the pulse
waveforms, set the CoherentOnTransmit property to true. Because you are operating the
transmitter in a monostatic (transmit-receive) mode, set the InUseOutputPort property to true to
record the transmitter status.

transmitter = phased.Transmitter('PeakPower',50e3,'Gain',20,'LossFactor',0, ...
    'InUseOutputPort',true,'CoherentOnTransmit',true);

See “Transmitter” for more examples on modeling transmitters and “Radar Equation” (Radar
Toolbox) for examples that use the radar equation.

Modeling Waveform Radiation and Collection

To model waveform radiation from the array, use the phased.Radiator System object. To model
narrowband signal collection at the array, use the phased.Collector System object. For wideband
signal collection, use the phased.WidebandCollector System object.

In this example, the pulse satisfies the narrowband signal assumption. The carrier frequency is 4
GHz. For the value of the Sensor property, use the handle for the isotropic antenna. In the
phased.Collector System object, set the Wavefront property to 'Plane' to specify that the
incident waveform on the antenna is a plane wave.

radiator = phased.Radiator('Sensor',antenna,...
    'PropagationSpeed',physconst('LightSpeed'),'OperatingFrequency',4e9);
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collector = phased.Collector('Sensor',antenna,...
    'PropagationSpeed',physconst('LightSpeed'),'Wavefront','Plane', ...
    'OperatingFrequency',4e9);

Modeling Receiver

To model the receiver, use the phased.ReceiverPreamp System object. In the receiver, you specify
the noise figure and reference temperature, which are key contributors to the internal noise of your
system. In this example, set the noise figure to 2 dB and the reference temperature to 290 Kelvin.
Seed the random number generator to a fixed value for reproducible results.

receiver = phased.ReceiverPreamp('Gain',20,'NoiseFigure',2, ...
    'ReferenceTemperature',290,'SampleRate',1e6, ...
    'EnableInputPort',true,'SeedSource','Property','Seed',1e3);

See “Receiver Preamp” for more details.

Modeling Propagation

To model the propagation environment, use the phased.FreeSpace System object. You can model
one-way or two-propagation by setting the TwoWayPropagation property. In this example, set this
property to false to model one-way propagation.

channel = phased.FreeSpace(...
    'PropagationSpeed',physconst('LightSpeed'), ...
    'OperatingFrequency',4e9,'TwoWayPropagation',false, ...
    'SampleRate',1e6);

See “Free Space Path Loss” for more details.

Implementing the Basic Radar Model

Having parameterized all the necessary components for the scenario, you are ready to generate the
pulses, propagate the pulses to and from the target, and collect the echoes.

The following code prepares for the main simulation loop. Time step between pulses

T = 1/waveform.PRF;
% Get antenna position
txpos = antennaplatform.InitialPosition;
% Allocate array for received echoes
rxsig = zeros(waveform.SampleRate*T,numpulses);

You can execute the main simulation loop with the following code:

for n = 1:numpulses
    % Update the target position
    [tgtpos,tgtvel] = targetplatform(T);
    % Get the range and angle to the target
    [tgtrng,tgtang] = rangeangle(tgtpos,txpos);
    % Generate the pulse
    sig = waveform();
    % Transmit the pulse. Output transmitter status
    [sig,txstatus] = transmitter(sig);
    % Radiate the pulse toward the target
    sig = radiator(sig,tgtang);
    % Propagate the pulse to the target in free space
    sig = channel(sig,txpos,tgtpos,[0;0;0],tgtvel);
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    % Reflect the pulse off the target
    sig = target(sig);
    % Propagate the echo to the antenna in free space
    sig = channel(sig,tgtpos,txpos,tgtvel,[0;0;0]);
    % Collect the echo from the incident angle at the antenna
    sig = collector(sig,tgtang);
    % Receive the echo at the antenna when not transmitting
    rxsig(:,n) = receiver(sig,~txstatus);
end

Noncoherently integrate the received echoes, create a vector of range gates, and plot the result. The
red vertical line on the plot marks the range of the target.

rxsig = pulsint(rxsig,'noncoherent');
t = unigrid(0,1/receiver.SampleRate,T,'[)');
rangegates = (physconst('LightSpeed')*t)/2;
plot(rangegates/1e3,rxsig)
hold on
xlabel('range (km)')
ylabel('Power')
xline([tgtrng/1e3,tgtrng/1e3],'r')
hold off

Copyright 2012 The MathWorks, Inc.
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